SuperPro Designer Examples

SuperPro Designer is shipped with more than sixty thorough examples covering a variety of industries and applications. In addition, we are constantly adding new ones. The examples are grouped into folders based on the target industry and application. A brief description of each example follows below. You can test-drive all these examples by downloading the functional evaluation edition of SuperPro Designer. Each example comes with a detailed ReadMe file in Word format that describes the process, highlights the results of the analysis and elaborates on various modeling concepts. Descriptive videos are available for some of the examples (the links are provided below).

We strongly recommend that you study the examples that are of interest to you. That is the best way to become an expert user of the tool. The default installation path of the Examples folder is C:\ Users \ Public \ Public Documents \ Intelligen \ SuperPro Designer \ v11 \ Process Library \ Examples

Pharmaceuticals Folder

Example NameExample Description
MABThis example analyzes the production of a therapeutic monoclonal antibody using animal cell culture. It is recommended to users of SuperPro that wish to model and evaluate biopharmaceuticals processes. Its ReadMe file explains several advanced modeling concepts, such as equipment operating in staggered mode for cycle time reduction, multi-cycling chromatography columns, equipment sharing among procedures, backwards scheduling of buffer prep and holding activities, in-line dilution of buffers, buffer losses during transfers, use of transfer panels and delivery lines, etc.
Two videos are available for this example on the videos page of our website.
Single-Use vs Stainless SteelThis examples compares the use of disposables (a.k.a., single-use) units with traditional stainless-steel equipment for production of therapeutic monoclonal antibodies. It is recommended to users of SuperPro that wish to model and evaluate biopharmaceuticals processes that utilize single-use system. Its ReadMe file provides detailed information on the use of disposables, addition of new items to the Consumables databank, procedure switching (easy replacement of stainless-steel with disposable units), etc.
Cell TherapyThis example analyzes the production of Allogeneic Stem Cells for Cell Therapy applications. The results include material and energy balances, equipment sizing, capital and operating cost estimation. Note that cell therapy is a very new field and therefore there is a great deal of variation in the cell production and purification processes that are currently in use by various organizations.
InsulinThis example analyzes the production of biosynthetic human insulin (BHI) using recombinant E. coli, which was the first product of the modern biotechnology. The technology was developed by Genentech and commercialized by Eli Lilly in the 1980s. The insulin precursor forms inclusion bodies intracellularly. The inclusion bodies are released through homogenization and partially purified with centrifugation. Next, they undergo solubilization, refolding, chemical transformation and purification with multiple chromatography steps and intermediate membrane filtration.
SynPharmThis example analyzes the production of an active pharmaceutical intermediate (small molecule API) which is formed by condensation of quinaldine and hydroquinone. Several reaction and separation steps are required to synthesize and purify the product. It is recommended to users of SuperPro that wish to model and evaluate fine chemical and related processes. Its first ReadMe file explains several modeling concepts, such as equipment sharing among procedures, cycle time bottleneck analysis, process scale up, etc. Its second ReadMe file elaborates on the role of the SuperPro databanks for facilitating and standardizing cost analysis and process technology transfer.
PenicillinThis example analyzes the production of penicillin, which was one of the first antibiotics produced via fermentation using fungi. The product is recovered using extraction with butyl acetate. The utilized solvent is purified by distillation and re-used in the process. The fermentation section of the process is batch whereas the purification line operates continuously.
Pharma TabletThis example analyzes the production of pharmaceutical tablets. The process involves mixing of the active pharmaceutical ingredient (API) with various excipients, nano-milling of the suspension, followed by drying/granulation, tablet formation, and coating.
Vial (Fill-Finish)This example analyzes a fill-finish process that manufactures 5 mL lyophilized vials containing a therapeutic protein. The process involves thawing of the frozen product protein solution, preparation of the fill buffer, sterile filtration of the solution, and filling into vials. Then lyophilization is carried out. Finally the vials are inspected before release for packaging and distribution. The cycle time of the process is reduced by utilizing four lyophilizers operating in staggered mode.

Bio-Materials Folder

Example NameExample Description
B-GalactosidaseThis example analyzes the production of ß-galactosidase (b-Gal) by a genetically-engineered strain of E. coli. This model is recommended to users interested in the production of high-value enzymes and bioproducts in general. Its Readme file explains how to use Resource Tracking features to design a water system; how to use Storage Units to represent waste tanks; and how to include formulation and packaging steps in the process.
Citric Acid
This example analyzes the production of citric acid by filamentous fungi. Citric acid is widely used in the food and beverage industries to preserve and enhance flavor. The fermentation section of the process operates in batch model and the downstream in continuous mode. The ReadMe file explains how to model continuous steps in a batch process using independently cycling units. This example is recommended to users interested in the production of commodity bio-chemicals.
FarneseneThis example models the production of ß-farnesene (a terpene) by a metabolically engineered yeast growing on glucose. It is recommended to users interested in the production of commodity bio-chemicals. Its Readme file explains how SuperPro handles Physical State calculations and how to customize them; how to employ user-defined equipment cost models; and how to use equipment in Stagger Mode to reduce the process cycle time.
Industrial EnzymesThis example analyzes the microbial production of industrial enzymes. The upstream section of the process operates in batch model utilizing multiple seed and production fermentors in staggered mode. The downstream section operates mainly continuously. The Readme file explains various advanced modeling concepts, including the recommended way of recycling water in cascaded membrane filtration systems.
Itaconic Acid
This example analyzes the production of itaconic acid, a promising bio-chemical that may replace acrylic acid and other oil-based chemicals in various applications. Itaconic acid is produced by filamentous fungi. The Readme file explains how to track intracellular water and distinguish dry cell weight from wet cell mass. It also explains how to utilize a Flow-Adjustment procedure to implement a robust system of water recycling.
LysineThis example models the industrial production of lysine. Lysine is an essential amino acid for humans and animals that has a large global market as a supplement for animal feed. The production process is based on the fermentation of Corynebacterium glutamicum. Its Readme file explains several advanced modeling concepts, such as how to model batch sterilization in SuperPro; how to employ user-defined equipment cost models; how to model Simulated Moving Bed (SMB) chromatography, etc.
PDOThis example analyzes the production of 1,3-propanediol (PDO) by a recombinant E. coli strain. PDO is a small organic molecule that can be utilized in a variety of applications, including the synthesis of polyesters, polyurethanes and polyethers. The fermentation section operates in batch mode and the downstream in continuous mode. This example is recommended to users interested in the production of commodity bio-chemicals.

Xantham GumThis example analyzes the production of xanthan gum. Xanthan gum is a polysaccharide with thickening and stabilizing properties that is widely used in the food, healthcare, and oil industries. In this example, the production process is based on the fed-batch fermentation of Xanthomonas bacteria. Isopropanol is utilized for the precipitation and recovery of the product. The utilized isopropanol is purified with distillation and recycled in pull-mode (the concept is explained in the ReadMe file). The process includes virtual Energy Recovery which is explained in the ReadMe file.
Yeast ExtractThis example analyzes the production of yeast extract, which is used as a food ingredient and as a substrate in the fermentation industries. The evaluated facility produces 7300 metric tons of powder yeast extract per year. The upstream section of the process operates in batch model utilizing multiple seed and production fermentors in staggered mode. The downstream section operates continuously.

Bio-Fuels Folder

Example NameExample Description
Algal OilThis example analyzes the production and purification of a triglyceride of palmitic acid (TAG) using microalgae grown in raceway ponds. The flue gas of a power plant is the source of carbon. TAG can be used to produce fuels and chemicals in a sustainable manner. The process includes a co-generation unit that supplies steam and electricity to the process. Anaerobic digestion of waste supplies with biogas the co-generation unit.
BiodieselThis example analyzes the production of biodiesel from vegetable oils. It is recommended to users interested in biofuels and biorefineries. The Readme file explains how to take advantage of the virtual Energy Recovery capability of SuperPro.
Cellulosic Ethanol
This example analyzes the production of ethanol from corn stover. It can be readily modified to represent the conversion of other types of cellulosic biomass, such as sugarcane bagasse, wheat straw, etc. The flowsheet comprises biomass pretreatment, enzymatic hydrolysis, yeast fermentation, distillation and cogeneration. This example is recommended to users interested in biofuels and biorefineries.
Cellulosic IsobutanolThis example analyzes the production of isobutanol from corn stover. Isobutanol can be used as a solvent or as a biofuel. The model comprises biomass pretreatment, enzymatic hydrolysis, bacterial fermentation, purification and cogeneration. It is recommended to users interested in biofuels and biorefineries. The Readme file explains advanced concepts related to the rigorous modeling of vapor-liquid equilibria (VLE) and distillation columns.

Food Processing Folder

Example NameExample Description
Beat Sugar
This example analyzes a Sugar Beets Plant that produces sucrose, molasses, dry pulp for animal feed and lime cake. Its co-generation unit supplies utilities to the plant and sells electricity to the grid. The results of the analysis include material and energy balances, equipment sizing, capital, and operating cost estimation.
BreweryThis example analyzes a generic brewery that produces 126,000 L of beer per day (5% alcohol by volume). The results include material and energy balances, equipment sizing, capital, and operating cost estimation, process scheduling and cycle time analysis. Heat integration opportunities are analyzed as well. A video is available for this example on the videos page of our website.
CarrageenanThis example analyzes the production of carrageenan from seaweed via extraction. Isopropanol is utilized for the precipitation and recovery of the product. The utilized isopropanol is purified with distillation and recycled in pull-mode (the concept is explained in the ReadMe file). The process includes virtual Energy Recovery which is explained in the ReadMe file. A video is available for this example on the videos page of our website.
Cassava RefineryThis example analyzes an integrated cassava refinery that produces tapioca starch, β-cyclodextrins, and animal feed. The ReadMe file explains how to model enzymatic reactions, a direct fired dryer for drying the animal feed, virtual energy recovery and recycling of water in pull-mode.
Cheese / Milk ProcessingThis example analyzes an integrated milk processing plant that produces cheese, butter, whey protein concentrate (WPC), and food-grade ethanol. The plant processes 2,000 metric tons (MT) of milk per day and produces 214 MT of cheese, 119 MT of butter, 15 MT of WPC, and 35 MT of 95% (by mass) ethanol. The results of the analysis include material and energy balances, equipment sizing, capital, and operating cost estimation.
Cocoa Processing
This example analyzes a cocoa beans processing plant that produces various categories of cocoa powders (plain, alkalized, chocolate flavored) and cocoa butter. The latter is used to produce various types of chocolate (dark, milk, white). The results of the analysis include material and energy balances, equipment sizing, capital, and operating cost estimation.
Corn RefineryThis example analyzes an integrated wet milling corn refinery, which fractionates corn to corn germ, corn gluten feed (including the corn steep liquor), corn gluten meal, and natural starch. The integrated refinery then uses part of the natural starch to produce glucose and fructose syrups (namely 95% glucose, and High Fructose Corn Syrup 42%). Several advanced modelling concepts are explained in the ReadMe file, such as modeling of batch (cyclical) steps in continuous processes, explicit and virtual energy integration, recycling in pull mode, user defined equipment cost models, material storage units, etc. A video is available for this example on the videos page of our website.
DextroseThe Dextrose example utilizes 95% glucose syrup (the origin of which could be corn, potato or tapioca starch) to produce the crystalline products dextrose anhydrous and dextrose monohydrate (in 2 cuts), as well as the hydrogenated 95% sorbitol spray dried. Moreover the by product of the dextrose monohydrate is also hydrogenated to produce non-crystalline sorbitol. This integrated flowsheet can be considered as the continuation of the corn refinery example
MannitolThe Mannitol example utilizes 95% glucose syrup (the origin of which could be corn, potato or tapioca starch) to produce crystalline mannitol. First, glucose is converted into mannose. Mannose is separated from glucose using a Simulated Moving Bed (SMB) chromatography column. Hydrogenation of mannose yields mannitol. The product is purified using ion exchangers, evaporators, crystallizers and centrifuges.
Modified StarchesThis example analyzes the production of modified starches (hydroxyl-propylated starches) from natural starch (the origin of which could be corn, potato or tapioca starch). The process flowsheet includes batch reactors, stripper and scrubber columns for volatile chemicals removal, as well as hydrocyclones and other typical starch processing units.
Monosodium Glutamate (MSG)This example analyzes the production of monosodium glutamate (MSG) via fermentation using Corynebacterium glutamicum. MSG is used as a flavor enhancing ingredient in Japan, China and other countries. The fermentation section operates in batch mode utilizing multiple fermentors in staggered mode. The product is recovered and purified continuously using a combination of centrifugal separators, ion exchange and activated carbon columns, a neutralizer, an evaporator / crystallizer, a rotary vacuum filter and a rotary dryer.
Orange Juice (OJ) PowderThis example analyzes a process for producing dehydrated orange juice powder. The process consists of the following steps: fruit preparation (washing, sorting, and sizing), concentrated juice production (extraction, finishing, concentration, and pasteurization), formation of powder and packaging. Additional byproducts include peel oil, which is sold to cosmetics manufacturers, and animal feed.
Potato RefineryThis example analyzes an integrated potato refinery that produces potato starch, proteins, protamylase and fibers. The process flowsheet includes multiple wash steps, reactions, virtual energy recovery and extensive water recycling and reuse.
SorbitolThe sorbitol example utilizes 95% glucose syrup (the origin of which could be corn, potato or tapioca starch) to produce 95% sorbitol spray dried. The process flowsheet includes multiple reactors, ion exchangers, activated carbon columns, evaporators, a spray dryer, and extensive recycling of water in pull mode.
Sunflower OilThis example analyzes a Sunflower Seed Crush Plant that produces sunflower oil, lecithin, soap stock and cake for animal feed. Its co-generation unit satisfies the utility needs of the process and sells electricity to the grid. The ReadMe file explains how to model steam boilers and turbines, neutralizers, condensers, evaporators, reactors, strippers, dryers, etc.

Metallurgy Folder

Example NameExample Description
Battery Cathode MaterialThis example analyzes a batch process producing nickel-rich cathode material for lithium-ion batteries, namely NMC 811. The cathode material is produced from older generation cathode scraps (NMC 111) by means of hydrometallurgical and hydrothermal processing. The ReadMe file of this example explains several modeling concepts, such as equipment operating in staggered mode for cycle time reduction and equipment sharing among procedures.
Lithium-Ion Battery RecyclingThis example analyzes a batch physico-hydrometallurgical process for recycling of end-of life lithium-ion batteries. The separation and recovery of ferrous and non-ferrous metal fractions as well as manganese sulfate, cobalt sulfate, nickel and lithium carbonates is accomplished by means of physical sorting, leaching, precipitation, solvent extraction and crystallization. Staggered equipment is employed for the cycle time bottleneck steps to reduce the process cycle time and increase the overall process throughput.
Lithium ExtractionThis example analyzes a continuous hydrometallurgical process for the extraction of lithium from spodumene ore and generation of battery-grade lithium carbonate. The flowsheet features decrepitation, sulfatation-roasting, purification by sequential neutralization and evaporation-crystallization. The results of the analysis include material and energy balances, equipment sizing, capital, and operating cost estimation.
Rare Earth Elements (REE)This example analyzes a continuous process for the extraction, separation, purification and recovery of light rare earth oxides from a fluorocarbonate-rich ore. The process features mineral processing by comminution, magnetic separation and flotation prior to hydrometallurgical operations such as leaching, precipitation and solvent extraction. The process includes extensive water recycling in pull-mode.
Cu-Ni Matte LeachingThis example analyzes a hydrometallurgical process for the valorization of copper-nickel matte. Nickel is extracted by pressure oxidation-metathesis with the accumulation of the reduced copper minerals in the leaching residue. The readme file of this example provides a techno-economic assessment of the process and explains the concept of recycling in pull-mode.
Zircon Processing
This example analyzes a continuous hydrometallurgical process for the extraction, separation and recovery of zirconium, uranium and hafnium from zircon sand. The process features alkali fusion, leaching, precipitation and solvent extraction in counter-current mode for the separation and recovery of the three valuable metals.

Waste Valorization Folder

Example NameExample Description
Mango Kernel RefineryThis example analyzes the extraction of valuable materials, such as Mango Oil, Protein, Fiber and Starch from Mango Kernels. The process features a co-generation unit and purification / recycling of hexane used for the extraction of mango oil. The results of the analysis include detailed material and energy balances, equipment sizing, capital and operating cost estimation.
Pectin from Citrus PeelsThis example analyzes the production of pectin from orange peels along with co-production of animal feed and vinasse. Isopropanol facilitates the precipitation and purification of pectin. The process includes extensive recycling of water and isopropanol in pull-mode. The ReadMe files explains how to track the composition of streams on a dry-mass basis along with several other modeling concepts.

Environmental Folder

Example NameExample Description
Air Pollution ControlThis example models a sequence of three units (cyclone, bag house filter and scrubber) for removing solid particles (Dust) and a volatile organic compound (Acetone) from an air stream with a volumetric flowrate of around 12,500 m3/h.
GE
This example analyzes an effort to minimize wastewater and hazardous sludge generation at a former polymer manufacturing plant of General Electric. Case (A) represents the original process. Case (B) utilizes VSEP membrane filtration units to treat and recycle the major source of wastewater that does not include hazardous materials. This greatly reduces the amount of hazardous sludge that requires disposal and the demand for fresh water.
Incineration
This example explains how to model incinerators in SuperPro Designer.
Industrial WastewaterThis example focuses on biological treatment of industrial wastewater. It explains how to model emissions of VOCs from such facilities and how to track the fate of heavy metals that adsorb on sludge.
Municipal WastewaterThis example focuses on the modeling and retrofit design of a municipal wastewater treatment plant. Case (A) represents a typical activated sludge plant without any sections for nitrogen removal. Case (B) represents a modified Ludzack-Ettinger process for nitrogen removal using anoxic zones. Case (C) represents a 4-stage Bardenpho process for more effective nitrogen removal
Ultrapure Water
This example analyzes a process that produces ultrapure water for a semi-conductor manufacturing facility. The inlet water is purified using a combination of activated carbon filters, anion & cation exchange columns, ultrafiltration and reverse osmosis (RO) membrane filters. In Case (A), the contaminated water undergoes physical treatment and released into the environment. Case (B) utilizes additional RO units to purify and recycle the treated water, reducing by 85% the demand for inlet well water.

COM, EPA-MACT Report, and Misc Folders

Folder NameExample Description
COMThe examples of this folder explain how to drive SuperPro Designer through Excel, C# and other programming tools in order to automate sensitivity analysis, perform mathematical optimization and conduct Monte Carlo simulation.
EPA-MACT ReportThe examples of this folder explain how to use SuperPro Designer and its Custom Excel Reporting feature to generate an EPA-MACT report for a single batch of a single recipe or an entire multi-product facility over a long-time horizon.
MiscThis folder includes several small examples that explain specific modeling concepts, such as modeling of kinetic and equilibrium reactions, gasifiers, fuel cells, heating with live steam, batch distillation, detailed hydrocyclones, pull operations, in-line mixture preparation, visualizing vessel contents, etc. Documentation is provided on the flowsheets of the examples.